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INTRODUCTION 

FOR HEAT conduction in a fixed region the specification of 
the local surface temperature or local heat flux normal to the 
surface is sufftcient to determine the temperature distribution 
within the region. The use ofconformal mapping for this type 
of heat conduction problem in two dimensions has been dis- 
cussed in [I]. If the surface temperature and heat flux are 
both specified the shape of the region must be free to adjust 
to accommodate both of these conditions. This note deals 
with the application of conformal mapping to two- 
dimensional heat conduction problems where the shape of 
the conducting region is unknown and will either adjust 
itself or is to be shaped in order to satisfy the imposed 
thermal conditions. 

The method is best illustrated by considering a specific 
example. Thus, consider the geometry shown in Fig. 1. A 
cooled surface maintained at the temperature t, is insulated 
at its sides. and the length normal to the plane of the figure 
is sufficiently long so that the geometry can be considered 
two dimensional. There is a region of conducting material 
on the plate. The upper surface of this region is isothermal 
and is subjected to a unidirectional source of thermal radia- 
tion. This region might be, for example, a steady state frost 
layer which has formed on a very cold plate exposed to the 
sun’s rays. Since the frost surface is at the freezing or sublima- 
tion temperature consistent with the surrounding conditions, 

it will be at a constant temperature t,. It is desired to find the 
shape that the frost region assumes and the heat flow through 
this region since this determines how well the frost layer 
insulates the surface. Alternatively the results can be inter- 
preted as the solution to the problem of finding the shape 

FIG. 1. Cross section of two-dimensional region with free 
boundary at uniform temperature ts and with uniform 
absorptivity dl exposed to unidirectional radiation yO. 

of a conducting region that will provide a uniform tempera- 
ture rs at its surface when this surface is subjected to incident 
radiation. It will be assumed that f is sufficiently low so 
that radiation emitted from the surface can be neglected 
compared with the absorbed incident radiation. 
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ANALYSIS 

To begin the analysis, a dimensionless temperature Tis de- 
tined as T= (t - t,)/(t, - t,) so that at the cooled plate 
T = 0, and at the irradiated free surface T = 1. Let a be the 
total absorptivity for the incident radiation flux qO. and 
define a length scale parameter :’ = k(t, - t,)/aq, so that 
X = x/y, Y = y/y, etc. The dimensionless configuration is 
shown in Fig. 2. 

FIG. 2. Conducting region and boundary conditions in 
dimensionless physical plane, Z = X + iY. 

At any position along the free boundary let the angle 
between the outward normal and the incident flux be p. 
Then the local heat conducted into the surface will be 
aq, cos b = k&i&t. In dimensionless form this becomes at 
any position along the free boundary aT,‘aN = cos fi 

where -n/2 < b < x/2. The symmetry of the problem 
implies that in particular aT/aN = 1 at X = 0. By resolving 
the derivative into components we obtain aT/jaX = 
cos p sin fi, ai-/a y = co2 p for -71/2 S fi < n/2. 

Since -T is a harmonic function of X and Y (i.e. - T 
satisfies Laplace’s equation) within the conducting region 
there exists a harmonic function I$ such that W z -T + i+* 

is an analytic function of the complex variable Z = X + iY. 

(The lines $ = constant are normal to the constant tempera- 
ture lines and are therefore in the direction of heat flow). 
In addition the function [ defmed by 

is also an analytic function of the complex variable Z. 
Now the boundary conditions shown in Fig. 2 are sufficient 

to determine the shape of the heat conducting region in both 
the complex W-plane (potential plane) and the complex 
i-plane (temperature derivative plane). In particular since 
there is no heat flow into the insulating material, the local 
heat flow is directed along the boundaries ?? and z in 
Fig 2 These boundaries aE therefore lines of constant I&. 
The boundaries sand 2176 are specified as lines of constant 

* The function 1+9 + IT is also used in the literature 
which is the W used here multiplied by i. 

T. Hence the conducting region must occupy the rectangular 
region in the potential plane shown in Fig. 3. The same 
numbers are used to designate corresponding points in the 
various planes. 

-T 

FIG. 3. Region mapped into potential plane, W = -T + i$. 

In order to find the shape of the condu%g region in the 
c-plane notice that on the free boundary 2176 

(3+(3 = c0s2 fi sin’ 1 + COP fi = cos2 /j = g. 

Hence 

(!z>‘+(S)‘=($ 

which is the equation of a circle in the c-plane with radius i 
and with its center at the point (0, 4). Since along 345 the 
temperature is constant and hence aT/dX = 0, the shape of 
the conducting region in the c-plane must be as shown in 
Fig. 4. 

t 
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FIG. 4. Region mapped into temperature derivative plane, 
i = -dT/aX + iaT@Y. 

Now integrating equation (1) yields 

W 

z= jdW. s 

1 
(2) 

By conformally mapping the regions in the W and < planes 
into a common region in some intermediate plane, the two 
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functions W and [ can be related. Then the integration 

indicated in equation (2) can be carried out to obtain the 

configuration of the conducting region in the physical plane. 

The common region used to relate W and [ is the upper 

half u-plane shown in Fig. 5. The mapping function from 

‘7 

t 

4 5 6 7 I 2 3 4 

(-1.0) (-b.0) (6.0) (1.0) 
t 

FIG. 5. Intermediate u plane, u = i; + in. 

the W-plane to the u-plane is found upon application of the 

Schwarz-Christoffel transformation [2] to be 

(3) 

To relate i to u a reciprocal transformation 

1 
w=- 

i 
(4) 

is used first to map the region in the c-plane into the region 

shown in Fig. 6. Then the Schwarz-Christoffel transforma- 

tion [2] is used to map this region in the w-plane into the 

(0,O) 
6 5 3 2 

(*4 

6 7 I 2 

(0,-I) 

FIG. 6. Intermediate w-plane. 

common region in the u-plane. This transformation is given 

by 

dw Cl -= 
da (u2 - b2)&* - 1)’ 

(5) 

Equation (5) can be integrated and corresponding points 

matched in the w and u planes to evaluate C, and the constant 

of integration. This yields 

1 2 

w=-= -n’og 

u ,/(l - b’) + ib ,j(u’ - 1) 

i J@’ - n*) > 6) 

The constant C, in equation (3) is evaluated by using the 

fact that T6 - T, = 1. Thus, 

-[W(6) - W(5)] = 1 = 

C, d5 
&” - b’) ,/C? - ‘1 

= 5 qJ(l - b’)] 
’ 

so that 

where K is the complete elliptic integral of the first kind. 

By use of equations (2), (3), (6) and (7) the intermediate 

variable u can be related to the physical coordinates. Thus 

” 1dW s i2 
Z=A+ 

Cddu = A -r&[-(1 - b2)] u 
“=-I 

” 

S[ ( 

log G J(l - b’) + ib,,&’ - 1) 

J(a” - b’) 
-1 

dli 

J(ti’ - b2) J(i2 - 1) (8) 

where ti is a dummy variable of integration. 

In order to obtain an expression for the dimensionless 

length A which relates the imposed physical quantities to 

the mapping parameter b, evaluate the integral of equation 

(2), as in equation (8), between points 4 and 3 which cor- 

respond to the points 5 = a and 1, respectively, on the 

real axis of the u-plane. Notice that the real part of the 

logarithm in equation (8) is zero on this portion of the real 

axis [2]. Hence this yields 

or after setting 0 = l/t, 

r, 

(9) 

The free boundary which extends between points 6 and 7 

maps onto the real axis of the u-plane. Its coordinates can 

therefore be found by integrating equation (8) along the 
real axis of the u-flane from r = - 1 to values of < lying 

between -b and 0. The part of the integral from < = - 1 
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to -b is evaluated as a separate constant. By taking the 
real and imaginary parts of the resulting expression the 
X and Y coordinates of the free boundary (denoted by X, 
and Y, respectively) are found to be 

.I 
x, I 2 

A=a=l+nA~,/(l-bZ)] 

b,/(l-S2)+SJ(1-b’) 

(s ( 
log ,/(6’- b2) > 

h 
L 
(I 

’ &5’ - b;,/(I - Sz) - 2 
I[F(sin-rd,b)+ X(b)]} 

Cooled surface 

C-b < 5 GO) (104 

(a) 
x/a 

Thin regions, I.41A r, Y 2 _=_= 
A a nAK[J(l - b’)] 

e 
b JCl - 5’) - 5 JCl - bz) X 

J(b2 - t’, 
-b 

x J(bZ _ t;J,l _ p2, t-b < t G 0) (lob) 

where 5 is a dummy variable of integration and F is the 
elliptic integral of the first kind [3]. 

The heat flow Q through the frozen region per unit length 
normal to the two-dimensional cross section is calculated 
as follows : 
Notice that 

” 

50 MO 2.50 300 

0 I( 

Q=2 
s 0 

kat dx = 2k(c, - tW) dX. 
JY y=o 

X=0 x=0 

A 
350 

(b) Regions of intermediote thickness, 0.3CASl.4 

Hence by using the Cauchy Riemann relation aT/aY = 

8$/8X [2] the integration can be carried out to give 

Q 
~ = +(5) - J1(4) = J1(6) - +(7) 
w, - L) 

-b 

= Im [W(6) - W(7)] = Im I dW 
dudu. 

“=Cl 

Finally substituting equations (3) and (7) into the integral 
shows that 

11 
0 

(11) 
Q K(b) 

2k(t, = K[J(l - b')l' Cooled surface 

0 lco 2.00 300 400 5a 

(cl Thick regions, O~lZ~A<O~3 

FIG. 7. Frozen region for various values of the physical 
parameter, A = aq,a/k(t, - t,). 

(a) Thin regions, 1.4 C A. 
(b) Regions of intermediate thickness, O-3 < A < 1.4. 
(c) Thick regions, 0.12 < A < 0.3. 

RESULTS 

Equations (9)-(11) relate the imposed physical conditions 
(which group into the single parameter A = aq,a/k[t, - t,]) 

to the coordinates of the free boundary and to the heat flow. 
These quantities are evaluated for various values of the 
mapping parameter b and can then be expressed in terms of 
each other. 



1636 SHORTER COMMUNICATIONS 

T 

aqoa /j= - 
k(f,- f,J 

Frc;. 8. Dimsnaionless heat flow through frozen region as a 
function of physical parameter involving absorbed incident 

radiation. 

The results are given in Figs. 7 and 8 which show the con- 

figurations of the free boundary and the heat flow through 

the region as a function of the physical parameter A. The 

large values of A are associated with large values of the 

absorbed radiative heat flux, or small values of the cooling 

temperature below the surface temperature. These conditions 
yield thin conducting regions. The large A are also associated 

with large values of the dimensionless heat flow as shown in 

Fig. 8. 
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INTRODUCTION 

A DISTRIBUTED parameter system represented by the one- 

dimensional heat conduction equation subject to both 

radiation and convection is studied. In the analysis the 

input function is assumed to be sampled and held and by 

employing the Laplace transform and the z-transforms 

respectively, a discrete-time system of equations is obtained 

for digital computer solution. Results obtained were in 

excellent agreement with published ones of Crosbie and 

Viskanta [il. The method of solution is a direct one and no 

iteration techniques are required 

STATEMENT OF ‘DIE PROBLEM 

We shall be concerned with the problem of obtaining the 

transient heating and cooling solutions for the onedimen- 

sional slab initially at a uniform distribution and then 

subjected to both radiation and convection at one of its 

boundaries. The assumptions made and the nomenclature 

used are identical to those of Crosbie and Viskanta [l] and 

hence will not be repeated here. The basic system equation 

is then given by 

au 
&Y,C) = $k1); t>o 

o<x< 1 
(1) 

and the initial and boundary conditions are 

u(u, 0) = ui 

g(O.r)=O 

gc1, t) = - g[u(l, 0, cl, (2c) 

Here a(.~, t) is the temperature of the system as a function of 

the time t and the spatial coordinate X. The dimensionless 

temperatures and the heat flux are defined in Table 1 of [ 11. 


